Insulin-like growth factor-I protects myoblasts from apoptosis but requires other factors to stimulate proliferation.
نویسندگان
چکیده
Insulin-like growth factor-I (IGF-I) has been shown to stimulate myoblast proliferation for a limited time after which serum is required to reactivate IGF-I-stimulated myoblast proliferation. The aim of these studies was to determine whether IGF-I can stimulate myoblast proliferation and/or inhibit apoptosis alone or whether co-factors are necessary. This was achieved by investigating the proliferative response of L6 myoblasts to IGF-I and horse serum (HS) and by examining the status of cells in terms of cell number, substrate adherence, cell viability and DNA laddering following incubation with IGF-I and HS. L6 myoblasts proliferate in response to IGF-I after 36 h is not due to accumulation of waste products or lack of IGF-I. The addition of a low level (1% v/v) of HS restores the ability of myoblasts to proliferate in response to IGF-I and this supports the existence of a mitogenic competence factor. Furthermore, myoblasts failing to proliferate in response to IGF-I after 36 h regain the capacity to respond to IGF-I for a further period of 36 h when exposed to fetal bovine serum. Following the initial (36 h) phase of IGF-I-stimulated proliferation, removal of both IGF-I and HS led to a dramatic (60%) reduction in the number of cells fully attached to the culture vessel, with 60% of the completely detached cells dead. Agarose gel electrophoresis of extracts from these detached cells revealed higher levels of DNA laddering than extracts prepared from attached cells with IGF-I present. This suggests that IGF-I acts as a survival factor by protecting cells from apoptosis. In conclusion these experiments support the presence of a mitogenic competence factor in horse serum, which restores the ability of cells to proliferate in response to IGF-I. Unlike proliferation, protection against apoptosis is achieved by IGF-I or HS independently of each other.
منابع مشابه
I-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملTranscriptional Regulation of the IGF Signaling Pathway by Amino Acids and Insulin-Like Growth Factors during Myogenesis in Atlantic Salmon
The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional ...
متن کاملAdipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin
Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 ...
متن کاملCharacterisation of the IGF system in a primary adult human skeletal muscle cell model, and comparison of the effects of insulin and IGF-I on protein metabolism.
In an attempt to address the complex and clinically challenging question of the causes of muscle wasting in patients with cachexia, we have developed a primary adult human skeletal muscle cell model. The cultured cells were characterised by immunocytochemistry using antibodies to the myofibrillar protein constituents desmin and titin. Myotube formation was confirmed biochemically by a fourfold ...
متن کاملOptimization and Construction of Human Insulin-like Growth Factor 1 Gene related to human health
Background and aims: Laron syndrome is a disease that treated by Insulin-like Growth Factor 1 (IGF-1). This protein is a single chain and has three disulfide bonds. People with Laron syndrome have low rates of cancer and diabetes, although they appear to be at increased risk of casual death due to their stature. IGF-1 is synthesized by many tissues and is secreted from liver as an endocrine hor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of endocrinology
دوره 163 1 شماره
صفحات -
تاریخ انتشار 1999